
Abstract Why do we have a continuous conception of
the opening of doors? Actually because the rotations
around the hinges act as conceptual tools that allow
us to ``think'' of door arrangements as continuously
interchangeable states. If our geometrical tooling were
reduced to the identity, then our conception of door
opening would reduce to the dichotomous alternative
closed/non-closed. This example highlights the role of
geometry in the conception of physical phenomena.
Accordingly, the recently introduced ``gauge'' geome-
tries result in an original approach to molecular
recognition when applied to quantum molecular states.
In particular, this theory features a graphical descrip-
tion of molecular recognition between biomolecules.
The 2D theory is discussed. The application of 2D
gauge geometry to the description of chirality is also
brie¯y presented.

Key words: Molecular recognition ± Ligand-protein
binding ± Gauge geometry ± Chirality ± Structure-based
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1 Introduction

The foundations of an original approach to molecular
recognition will be presented in this article. One outcome
of this theory is a graphic representation of the matching
between two potentially associating molecules, to be
constructed here in the case of electrostatic interactions.
This theory can potentially be applied to any biological
system, for example, protein complexes with ligands,
proteins or nucleic acids. As a result, new screening
tools, though not developed here, become available to
structure-based drug design. Now, this theory results
from the application of a geometry to a natural

phenomenon, here molecular recognition. In this state-
ment lies an intricacy faced by any presentation of the
theory. How can a geometry be of interest to a
physicochemical issue? We attempted to cope in the
simplest way with this question (Sects. 2, 3) before
dealing with gauge geometries (Sects. 4±6) and their
application to molecular recognition (Sect. 8). Only the
simpler 2D theory will be discussed. The application of
2D gauge geometry to the description of chirality will
also be brie¯y presented (Sect. 7), so as to show the
versatility of this approach.

2 What is a geometry?

As stated above, the proposed theory is but one
application of a geometry, to be henceforth called a
``gauge'' geometry. We must stress that the word
``geometry'' is understood here in the mathematical
context. For the sake of clarity, let us ®rst brie¯y present
this context. Geometry has long been concerned with the
study of ``geometrical ®gures.'' However, historically,
mathematical interest has progressively shifted from the
®gures themselves to the transformations enabling them
to be handled, and the properties invariant under these
transformations. For example, lengths are ``properties''
invariant by translations, rotations and mirror re¯ec-
tions, but not by dilations. In the contemporary context
then, as ®rst stressed by Klein and Riemann [1, 2],
geometry could be de®ned as the study of transforma-
tion groups and their invariants. Every transformation
group can be considered to de®ne a geometry. Unitary
geometries, for example, are associated with unitary
groups in Hilbert spaces. In Euclidean spaces ± the real
a�ne spaces where the notion of distance between points
is de®ned ± Euclidean geometry is associated with the
group of distance-conserving transformations ± the
group of isometries. Rotations, re¯ections and transla-
tions are isometries. Now translations are somewhat
trivial operations, and a classical result is that every
isometry can be factorized as the product of a transla-
tion by an isometry that leaves invariant (``stabilizes'')
an arbitrary point O [1]. The subgroup IsO of the
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isometries stabilizing O thus appears as the ``core'' of the
isometry group. Subgroups attached to di�erent points
are isomorphous. Accordingly, IsO can be considered to
de®ne Euclidean geometry ``locally'' at O. Our interest
will henceforth be focused on local geometries.

3 Geometries are tool boxes

A geometry in this context is a group of tools that allows
a de®nite level of ``handling'' of the objects considered,
hence a de®nite level of ``understanding'' of their
properties. This idea is central to the following. Let us
illustrate it by a simple example. Imagine that on a
remote planet there is a wall and, in that wall, a door
framed so as to open on both sides of the wall. Let us
assume that the planet folks know nothing of Euclidean
geometry and only master the more primitive concept of
identity. What could be their understanding of the door/
wall system? They would indeed ``see'' that all possible
door arrangements are di�erent, but they lack concep-
tual tools to ``think'' about them ± except when there is
``identity'' between the door and the wall planes.
Therefore the closed arrangement is the only one that
they can conceptually grasp. All other situations cannot
be conceived, except through the negative fact that they
di�er from the thinkable one ± they are nothing but
``non-closed'' arrangements. Now let our folks addition-
ally know of the re¯ection r through the wall plane. This
assumption turns the set of available geometrical tools
into the group containing identity and r, to be denoted
O(1)1. r allows our folks to think of a de®nite
relationship ± enantiomerism ± between a door arrange-
ment and its r image. Non-closed situations are still
individually unthinkable, but the closed case is now
de®ned by a symmetry property, as the single arrange-
ment superposable on its r image. A prominent scientist
of theirs could express this conception according to the
following O(1) de®nition. However, this conception is
radically altered in the framework provided by Euclid-
ean geometry, because the larger conceptual tool box
provided by the isometry group includes rotations,
which are indeed ®t to conceive the door pivoting
movement around its hinges. Door arrangements can be
``thought'' of as a continuous manifold of individual
states interchanged by rotation, and the door/wall
system as featuring a single rotational degree of freedom
(Fig. 1).

O(1) de®nition of door opening: ``I call any door non-
closed (open), and say it has opening, if its r image
cannot be brought to coincide with itself.''
Euclidean de®nition of door opening: Door opening is
the continuous phenomenon of rotation of the door with
respect to the wall.

The former conception is dichotomous while the latter is
continuous, but both deal with one and the same
phenomenon ± door opening. The two conceptions are

not con¯icting but are hierarchically related, since they
are associated with di�erent levels of geometrical
analysis. Therefore it is indeed possible that a single
phenomenon appears under two widely di�erent guises
in two di�erent geometries. In the O(1) conception door
opening is negatively de®ned. The actually de®ned
concept, closing, reduces to a symmetry property. In
the Euclidean conception door opening is a positively
de®ned, continuous and extensive phenomenon. How is
this breakthrough possible? Because Euclidean geometry
correctly brings out the nature of the internal degree of
freedom of the door/wall system. The key fact is that for
every degree of freedom there is a set of operations
canonically associated with it, enabling it to be ``manip-
ulated''. Here, the rotations interchanging door arrange-
ments are associated with the door degree of freedom.
There is a duality between geometrical degrees of
freedom and geometrical operations. Conversely, this
set of operations is required if we are to ``think'' of this
degree of freedom. Were the required set unavailable,
the degree of freedom could not be thought of properly.
This is why O(1) geometry fails to provide a continuous
conception of door opening. In this respect, the ``larger''
is the ``richer'' ± shifting to larger groups cannot but
enrich our conception of the phenomenon considered.
The important practical result is that shifting from O(1)
to Euclidean geometry provides a continuous descrip-
tion of the way the dichotomous ``closing'' symmetry is
breaking. It is the only possible description of symmetry
breaking insofar as all degrees of freedom are compre-
hensively dealt with. Still richer geometries cannot
improve this description since the single rotational
degree of freedom has already been dealt with, so the
previous description of symmetry breaking appears
unique. This description re¯ects the particular nature
of the degree of freedom involved, thus the fact that its
formal expression looks so di�erent from the previous
symmetry criterion. Lastly, in no way are O(1) and
Euclidean geometries limited to tackling the question of

Fig. 1. The phenomenon of door opening as seen through two
di�erent geometrical tool boxes. Left, a tool box reduced to the
group O 1� � (see text) can only allow us to ``think'' of the symmetry
property associated with the closed arrangement. Right, the larger
Euclidean tool box allows us to ``think'' of the rotational degree of
freedom of the door/wall system. This results in a continuous
conception of door opening describing the way the previous
symmetry is breaking

1O (1) denotes the 1D orthogonal group, to which this group can
be identi®ed
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door opening. Similarly, the gauge geometries to be
constructed will be applied to two largely unrelated
phenomena: chirality and molecular recognition.

4 Why bother with square-integrable ®elds?

The example of door opening illustrated a result that
was argued [3] to be typically at stake in geometrical
argumentations ± describing the breaking of a discrete
symmetry. Gauge geometries will be brie¯y discussed
now. The ®rst question relates to the type of object that
these geometries enable to be ``handled.'' In other words,
what are the ``geometrical ®gures'' of the so-called gauge
geometries? Their geometrical ®gures are ®elds. The
proofs proposed up to now [3±5] apply to square-
integrable (L2) ®elds. ``Fields'' stand for the spatial
distributions w�~r� of complex numbers, and ``square-
integrable'' means that jw�~r�j2 is integrable (Eq. 1) with
respect to the integration element (the Lebesgue measure
dm) appropriate to the dimension considered (e.g. in 3D
dm � dx dy dz). L2 ®elds form vector spaces featuring
a rich structure, called Hilbert spaces and denoted L2

(Rd, dm) in dimension d [6]. This structure in a way plays
the role of the hinges previously described, putting the
door/wall relationship on ®rm grounds.Z
jw�x; y; z�j2 dx dy dz is finite �1�

Why can these spaces be of interest in protein or nucleic
acid studies? Simply because these are molecules, and
because molecules are described by L2 wave functions in
non-relativistic (NR) quantum mechanics. Fields ful®ll-
ing Eq. (1) describe spinless particles. Non-zero spin
particles such as electrons are described by adding a
discrete spin coordinate r to the spatial ones. Wave
functions are still required to be L2, albeit summation is
also carried out on r. Assuming spinless nuclei, mole-
cules are described by wave functions of the form

wr1...rN
~r1 . . .~rN ;~R1 . . .~RA
ÿ �

ful®lling Eq. (2), where

~r1; r1; . . .~rN ; rN (~R1 . . .~RA) are electron (nuclei) coordi-
nates.X
r1��1

. . .
X

rN��1

Z ��wr1...rN
~r1 . . .~rN ;~R1 . . .~RA
ÿ ���2

d3r1 . . . d3rNd
3R1 . . .d3RA is finite �2�

All these descriptions are variants of the same basic
form (Eq. 1). In the NR quantum framework, the states
of all forms of molecular matter can be described as L2

®elds. Since handling the wave function (Eq. 2) is
practically cumbersome, it is fortunate that this con-
clusion also applies to simpli®ed or partial levels of
molecular description. Thus nuclear skeleton quantum
states, one- or many-electron orbitals and densities2,
describing protein residues, enzyme active sites or DNA

bases, are L2 ®elds. Broadly speaking, proteins, nucleic
acids, drugs and other molecules appear as geometrical
®gures from the viewpoint of gauge geometries. In this
preliminary account, the discussion of gauge geometries
and their applications will be limited to the case of 2D
scalar L2 ®elds, which physically describe 2D spinless
particles. 3D gauge geometries are brie¯y tackled in
Refs. [3, 4] and will be dealt with in greater detail
elsewhere.

5 Gauge geometries

Gauge geometries can be de®ned as ``gauge generaliza-
tions'' of classical geometries ± Euclidean geometry in
this case. The origin of this designation will be
explained below. The 2D local group at an arbitrary
®xed origin O in the sense of Sect. 2 will be presented
now. Our ``geometrical ®gures'' are thus the ®elds
w�x; y� square-integrable with respect to dm � dx dy.
Let us consider such a ®eld just as the door/wall system
was considered, and look into the way Euclidean
geometry enables us to ``think'' of its degrees of
freedom as seen from O. There are two kinds of local
isometries: the rotations of centre O (determinant +1)
and the indirect isometries (determinant )1) which in
2D are the re¯ection axes containing O. Rotations
enable the ®eld orientation to be changed without
deforming it. In other words, rotations handle a speci®c
type of degree of freedom, which could be said to be
``external.'' Re¯ection axes do not add much to this, as
they change the ®eld as a whole into its symmetrical
counterpart just as the door was moved by r. Clearly,
isometries provide us with a rather crude understanding
of L2 ®elds. Is it possible to achieve a breakthrough
comparable to the one previously provided by Euclid-
ean geometry in the door/wall case? Recalling the
discussion in Sect. 3, this would require the identi®ca-
tion of the ®eld degrees of freedom escaping the reach
of isometries ± the internal degrees of freedom ± and the
construction of operations enabling them to be handled.
Is this possible? Gauge geometries were designed as a
positive answer to this question, albeit initially in a
more speci®c context. This construction is detailed
elsewhere [3±5] so it will only be brie¯y described here
for the real case. Theory identi®es the geometrical
degrees of freedom of real L2 ®elds as the orientations of
a double series of symmetry groups called ``radial
canonical groups'' (RCG). The guiding line of this
theory is a structural decomposition of symmetry
groups. The ®rst step is simple. All isometries stabilizing
O move ®eld values along the circles of centre O. Thus
®eld restrictions to circles are geometrically independent
whatever their other relations. The symmetry group G�r�
is associated with the ®eld restriction w�r� of w to the
circle of radius r. Now w�r� itself is a composite object,
and theory shows that it should be projected along the
irreducible representations of the local isometry group.
The resulting projections w�r�n are de®ned by Eq. (3) and

w�r� satis®es w�r� � w�r�0 �
P

n�1 w�r�n . The RCGs are the

symmetry groups G�r�n of the w�r�n .

2 Continuous integrable ®elds vanishing at in®nity are L2. This
result applies to molecular electron and nuclear densities, which are
square moduli of wave-functions
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w�r�n �h� � Dn�r� 1����
2p
p einh � �Dn�r� 1����

2p
p eÿinh

Dn�r� �
R 2p
0 w�r; h� � 1����

2p
p eÿinhdh

8<: n � 1 �3�

In the polar representation, w�r�n looks like a 2n-leaf
clover and it becomes evident that the structure of G�r�n is
well de®ned (Fig. 2). G�r�n contains a Cn rotation centre,
and n re¯ection axes crossing at O forming a so-called n-
star [3±5]. It turns out that, up to the scale factor jDn�r�j,
w�r�n is entirely determined by its symmetry group G�r�n .
This and the fact that RCGs have a well-de®ned
structure are basic properties of this approach [3±5].
What happens when w is rotated? It turns out that this
amounts to rotating all RCGs as a whole. In particular,
it is clear that jDn�r�j is invariant in such operations and
thus plays no geometrical role in itself. jDn�r�j simply

measures the amplitude of the projection w�r�n . Conse-

quently, the only geometrical degree of freedom of w�r�n is
the orientation of G�r�n , and this orientation completely
de®nes w�r�n up to a scale factor. Accordingly, as seen
from O, L2 ®elds appear to be made out of a double
series of ``clovers'' (w�r�n ) whose geometrical degrees of
freedom (RCGs orientations) are well de®ned. The
equivalent of a door arrangement here is a distribution
of RCG orientations. Having identi®ed the geometrical
degrees of freedom of L2 ®elds, we can now turn to the
geometry enabling them to be handled. The rotations
interchanging door arrangements were associated with
the door degree of freedom. Here, distributions of RCG
orientations must be interchanged. However, Euclidean
rotations move RCGs as a whole. Therefore, rotations
are not able to change their relative orientations, hence
they are not versatile enough to settle our problem. The
isometry group is not rich enough to enable us to think
of L2 ®eld degrees of freedom, just as O�1� geometry was
not rich enough to enable us to think of the door degree
of freedom. The required operations must be able to
change the relative orientations of RCG, hence they
must rotate them independently. Rotations must be
applied individually to every w�r�n , rotating G�r�n by the
arbitrary angle an�r� (Eq. 4). The resulting operations,

which we propose to call gauge rotations, generalize
Euclidean rotations. A 2D gauge rotation is de®ned by
the set of angular functions an�r� (n � 1).

w�r�n �h� 7!w�r�n �hÿ a� Euclidean rotation

w�r�n �h� 7!w�r�n �hÿ an�r�� Gauge rotation

(
�4�

Re¯ection axes can be similarly generalized. Together
with gauge rotations, these operations form an in®nite-
dimensional Lie group that contains the local isometry
group. This situation is strikingly similar to that of the
door/wall system. The name ``gauge geometry'' was
chosen with reference to the notion of gauge transfor-
mation that proved so important in relativistic quantum
®eld theory [7]. In short, the present gauge operations
are to Euclidean operations what second-order gauge
transformations are to ®rst-order ones. The present
construction is a mechanism of gauge extension of the
classical geometries, rather than an isolated new geom-
etry.

6 Radial loops

A door arrangement can be characterized by an angle. A
L2 ®eld is characterized by the distribution of an in®nite
number of RCGs. Is there a convenient representation of
that distribution? The answer is ``yes''. Radial loops
provide a simple graphical representation of the ®eld
degrees of freedom. Radial loops are brie¯y discussed
here. Up to now the factors determining the orientation
of G�r�n were not precised. It turns out that this
orientation only depends on the phase un�r� of the
complex function Dn r� � de®ned by Eq. (3) [3]. Accord-
ingly, at ®xed jDn r� �j, the direction of Dn�r� in the
complex plane and the orientation of G r� �

n are ``mechan-
ically'' related just as cog wheels in a gear box (Fig. 3).
This relation is the basis of radial loop theory. Firstly,
because of this relation, the graph of Dn r� � as a function
of r provides a faithful representation of the distribution
of RCG orientations along r at the ®xed order n. For
theoretical reasons, this graph is to be called the nth
order absolute radial loop (ARL) whilst Dn r� � is called
the absolute radial function (ARF)3. An advantage of
ARLs is that the amplitude information jDn r� �j is
merged with the phase information un r� �, so that ARFs
sum up all the information contained in w r� �

n at the order
n. A narrow ARL is the signal of weakly radially
misaligned RCGs and a wide ARL indicates largely
misaligned RCGs. Secondly, the orientation of G r� �

n does
not change with r alone, but also with n at ®xed r. It
turns out that a second type of radial loop, to be called
a relative radial loop (RRL), is associated with this
phenomenon. Theory shows that indices should be
considered by pairs n; m � 1. Now clovers with di�erent
numbers of leaves should be compared at ®xed r, and it

Fig. 2a±c. The origin of radial canonical groups. Field restrictions
to circles are functions of only one angular variable h measured
with reference to an arbitrary reference frame at O. Such a real
function, say f h� �, can be represented in polar form, that is in the
2D version of the usual representation of spherical harmonics,
found in classical textbooks. For every h value, a point is drawn at
the angle h and the distance f h� �j j from the origin (a). The function
then is represented by a closed curve. The sign of f h� � is reported
separately. In this form w r� �

n appears as a 2n-leaf ``clover,'' here
pictured in the case n � 2 (b). The advantage of this representation
is that symmetries become obvious. The symmetries of the 2n-leaf
clover with alternating signs are a Cn rotation centre and n (not 2n)
re¯ection axes forming a n-star (c)

3Gauge geometries were initially introduced during the analysis of
chirality [5]. The fact that these geometries are completely
independent from this particular application was not recognized
initially. This resulted in ``radial loops'' being called ``chiral loops''
in [3±5]. A more correct denomination is introduced here
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turns out that the misorientation of G r� �
n and G r� �

m is
related to the phase of the relative radial function (RRF)

Dn;m r� � = ��Dn r� ��M �Dm r� ��N just as the orientation of G r� �
n

was related to the phase of Dn r� �. Here N � n=p and
M � m=p, p being the highest common factor of n;m [4].

G r� �
n and G r� �

m have at least one common axis if and only if

Dn;m r� � is real. The RRL of order n;m is the graph of
Dn;m r� � in the complex plane, and gathers this relative
information for all possible r. Radial loops are practi-
cally invaluable because they can be directly obtained
from the ®eld through Eq. (3). Radial loops picture the
®eld as seen ``from the inside''.

7 First application: describing molecular chirality

The ®rst application of these seemingly abstract results is
the description of molecular chirality. Since the resulting
theory of chirality is detailed elsewhere [3±5], only a brief
account will be found here. Kelvin's de®nition [8] states
that a molecule is achiral if it is superposable on its
image in a plane mirror, and chiral otherwise. Glycine is
achiral, whilst L- and D-alanine are chiral. In other
words, a molecule is achiral if its symmetry group G
contains at least one indirect isometry, and chiral
otherwise. The latter form provides the dimension-
independent de®nition to be applied in 2D. Chirality
appears as a dichotomous symmetry issue in this
framework ± the Euclidean framework. Now recall that

in O 1� � geometry, door opening also appeared as a
dichotomous symmetry issue. The O 1� � conception of
door opening is indeed closely similar to Kelvin's
conception of chirality. Both door opening and chirality
are negatively de®ned. The actually de®ned concepts ±
closing and achirality ± reduce to symmetry properties.
The closed situation is the case when the symmetry
group of the system contains the indirect isometry r ± in
all other situations the symmetry group contents reduce
to the identity. The relationship between r-image door
arrangements parallels the mirror-image relationship
between L- and D-alanine, and was indeed called
enantiomerism in anticipation in Sect. 3. Shifting from
O 1� � to Euclidean geometry provided a conceptual
breakthrough in the understanding and the description
of the door/wall system. Do gauge geometries provide a
similar achievement in the case of chirality? Yes. It turns
out that it is both chemically and theoretically fruitful to
®rst reduce the problem to the notion of local chirality.
Local chirality is chirality viewed from an arbitrary
origin O. An object is said to be (locally) achiral at O if it
is superposable on its image in a mirror containing O.
Otherwise, it is said to be (locally) chiral at O. In other
words, denoting G O� � � G the subgroup of the ®eld
symmetries that stabilize O, a ®eld is achiral at O if G O� �
contains at least one indirect isometry, and chiral at O
otherwise. Now, in the case of L2 ®elds, chirality is
shown to be a special case of local chirality ± simply
because it is shown that L2 ®eld symmetry groups always
stabilize at least one point A, typically the ®eld inertia
centre, so that chirality and local chirality at A are one
and the same thing [3]. Thus the local de®nition of
chirality practically brings about the freeing of the
selection of the origin. For example, asymmetric carbons
or protein active centres can be selected at will. Now,
what is relevant to chiral recognition, the chirality of a
protein as seen from its inertia centre, or rather from its
active site? The notion of local chirality can thus be
argued to be highly relevant to (bio)chemistry [3]. Let
us then focus on the understanding of local chirality
provided by gauge geometries. Recall that gauge geom-
etries were ultimately based on a theory of symmetry
groups (Sect. 5). A local symmetry group is accordingly
``structured'' as the intersection of well-de®ned elemen-
tary building blocks [3±5]. These building blocks are
precisely the RCGs G r� �

n . The explicit expression of G O� �
is Eq. (5):

G�O� �
\
n�1

\
r>0

G�r�n : �5�

Any element of G O� � must therefore be contained, with
the same orientation, in every G r� �

n . In particular, if the
®eld is achiral at O then G O� � contains a re¯ection axis.
Since G r� �

n only contains re¯ection axes under the form of
n-stars, the n-stars must be oriented so as to contain this
axis, so that all RCGs n-stars must be aligned. The
converse statement is trivial. Local achirality then
appears as the phenomenon of alignment of the indirect
elements of RCGs, just as closing appeared as the
phenomenon of alignment of the door and the wall
planes. Now, just as the ``closing'' symmetry is broken

Fig. 3a±d. The origin of absolute radial loops. The orientation of a
n-star is determined as soon as that of a single axis is known.
Denoting Dn a� � the group containing a Cn rotation centre and the n-
star featuring one axis at the angle a, theory shows [3] that
G r� �

n � Dn ÿun r� �=n� �, where un r� � is the phase of Dn r� � (a). As a
result, the orientation of G r� �

n and that of Dn r� � in the complex plane
are connected just as those of cog wheels in a gear box (b). If G r� �

n
is rotated by p=n then Dn r� � is changed into its opposite (arrows in
a, b). Radially gathering RCGs between two radii r1 and r2 at ®xed
n (n � 2 in c), we get a curve portion in the complex plane (d).
The completed curve forms a loop ± the so-called absolute radial
loop ± as it is shown to begin and end at the origin [3±5]. ARLs are
oriented in the direction of increasing r
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when the door is rotated, the achiral symmetry is broken
± re¯ection axes are ``torn away'' ± when RCGs are
rotated with respect to one another. Just as Euclidean
geometry provided the tools to think of door opening as
the misalignment phenomenon introduced by the door
rotation with respect to the wall, gauge geometries
provide the tools to think of chirality as the misalign-
ment phenomenon introduced by the relative rotation of
the n-stars. Therefore the gauge conception of chirality is
much richer than the Euclidean one, and the resulting
de®nition of chirality is strikingly close to the Euclidean
de®nition of door opening.

Euclidean de®nition of chirality at O (Kelvin's de®ni-
tion): ``I call any geometrical ®gure . . . chiral [at O], and
say it has chirality [at O], if its image in a plane mirror
[containing O] . . . cannot be brought to coincide with
itself.'' [8]
Gauge de®nition of chirality at O: Chirality [at O] is the
continuous phenomenon of misalignment of the indirect
elements of RCGs (n-stars in 2D).

Now again, both de®nitions deal with one and the same
phenomenon ± chirality. All the remarks of Sect. 3 also
apply here. Note that only two special forms of chirality
appear ± misalignment over r at ®xed n, and over n at
®xed r. For theoretical reasons, the former was called
absolute chirality and the latter relative chirality [3±5].
Chirality is the addition of absolute and relative chirality
just as a vector is the addition of its projections on a
basis. A major reward of this approach is that radial
loops provide a graphical representation of chirality,
simply because the ``spreading out'' of radial loops
provides a faithful picture of the amount and the
distribution (``how'' and ``where'') of n-stars misalign-
ment (Sect. 6). Absolute chirality is read o� ARLs whilst
relative chirality is read o� RRLs. The more spread the
nth order ARL is in the plane, the more absolutely chiral
is the ®eld at order n. The more distant from the real axis
is the RRL, the more relatively chiral is the ®eld. Radial
loops show us ``how'' and ``where'' molecules are chiral.
This description can be applied to the evolution of
chirality during chemical reactions (Fig. 4). In the gauge
framework, the solution of this century-old concern
of chemists ± how to describe molecular chirality ±
appeared quite straightforwardly.

8 Second application: towards a theory
of molecular recognition (MR)

Broadly speaking, the matching of molecular shapes like
those of puzzle pieces as a condition for the formation of
protein/ligand, protein/protein or protein/DNA com-
plexes, for example, is the core of MR, and the role of
this geometrical condition is emphasized in biology
because interactions are weak and delocalized over
molecular surfaces. How could our understanding of
MR bene®t from the introduction of gauge geometries?
This section is devoted to a preliminary answer to this
question. For the sake of clarity, the nature of the
understanding to be expected will be illustrated by the
analysis of a simpli®ed example problem rather than pre-

sented formally. The problem considered is that of the
complex formation between a protein P and a ligand S.
A 2D rigid model of the protein active site will be given,
and two potential ligands will be compared. The active
site will be assumed to feature a rotational C6 symmetry
at the centre O, to be henceforth selected as the origin.
The chosen ligands are two enantiomers L and L� ± this
condition is by no means imposed ± and feature C3

rotational symmetry at the centre O0 4. The degrees of
freedom of the rigid ligands are their orientation and the
position of O0. For the sake of simplicity, the latter
degrees of freedom will not be dealt with, and O0 will be
assumed to be equal to O. The only degree of freedom
considered is the orientation a of the ligand in the active
site cavity (Fig. 5). We shall now focus on the thermo-
dynamic aspect of MR and, as regards this aspect, our
viewpoint will be that MR between P and a ligand S is
measured by the Gibbs energy DG of the complex
formation reaction P � S ¡ PS, on which the equilibri-
um constant K � �PS�=�P ��S� depends. Furthermore,
entropy e�ects will be dropped and our interest will be
focused on the electrostatic energy contribution DE to
DG:

DE �
Z

q1 ~r� � V2 ~r� � dx dy ; �6�

where q1 ~r� � is the ligand charge density and V2 ~r� � the
host potential. In this framework, the more negative DE,
the stronger the association and the better the recogni-
tion between P and S. All these simplications can be
dropped but the general theory is beyond the scope of
this paper. Let us only note that the need for a natural
origin like O disappears when the problem is studied in

Fig. 4a±e. In the gauge framework, chirality is a continuous time-
dependent phenomenon during chemical reactions. This is illus-
trated by a 2D model of the SN2 nucleophilic substitution [3]. A
nucleophile ``Cl'' impinges on a 2D chiral trivalent centre (a, b),
induces Walden inversion (c) then symmetrically expels the
opposite ``Cl'' (d, e). This ®gure shows the n � 1 order ARLs of
the total system electron density at various times t. Enantiomers
have symmetrical ARLs run in opposite directions (a, e or b, d).
Diastereomers have ARLs of di�erent shapes (a, b). In the course
of this model mechanism, the electron density absolute chirality
decreases steadily down to null (c), then increases symmetrically.
Unit: ÊA

ÿ2

4 a-Cyclodextrin, because of its planar ring-like structure, inspired
the construction of this 2D active site model cavity.
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Fourier space. The simplest way to investigate the
understanding brought by gauge geometries in this
typical problem in biochemistry is to introduce the
geometrical description of the ®elds q1 and V2 in the
expression of DE. Denoting D1

n r� � [D2
n r� �] the ARFs of

q1�V2�, it is readily shown that DE can be developed as
DE � DE0 � DE1 � � � � where DEn is given by Eq. (7) for
n � 1, Re denoting a real part. DE0 has no in¯uence on
a, so will not be discussed.

DEn �
R�1
0 r drfR 2p0 q r� �

1n hÿ a� �V r� �
2n h� � dh g � 2Re Ine

ÿina
� �

In �
R�1
0 D1;2

n;n r� �r dr

8<:
�7�

The complex number In is the integral of the radial
function D1;2

n;n r� � � �D 1
n r� �D2

n r� � over the associated radial
loop, to be called the mutual recognition loop (MRL).
Analysis will now be focused on a single order n � 1.
The ®rst result is that the minimum of DEn is Eq. (8).
This minimum is attained when a takes a value ± de®ned
up to 2p=n ± determined by the phase of In. In our
framework, this minimum de®nes the ligand equilibrium
orientation as far as the nth order is concerned. Hence,
as far as the nth order is concerned, the phase of In
determines the ligand equilibrium orientation. On the
other hand, the modulus of In determines the minimum
of DEn. As far as the nth order is concerned, the larger
jInj, the better MR. Therefore, a single complex number,
In, concentrates all the information relevant to MR at
every given order.

DEn� �minimum� ÿ2 jInj �8�
Now, knowing that In is the key quantity as regards
MR at the nth order, what factors control its value? In
depends on the radial function D1;2

n;n, and the answer lies
in the interpretation of this relation. Let us ®rst discuss
the structure of D1;2

n;n. Since the geometrical matching of
the two ®elds q1,V2 is at stake, a posteriori it appears
natural that one ARF from each ®eld contributes to
D1;2

n;n. Besides, D1;2
n;n clearly has the structure of a RRF of

order n � m, since p � n and N � M � 1 in this case
(Sect. 6). This is also quite intuitive: in the gauge
framework, ®elds are pictured as gatherings of elemen-
tary ``clovers'' and Eq. (7) shows that DEn results from
a comparison between the clovers q r� �

1n and V r� �
2n ,

materialized by the integration over h. The h integral
is zero by symmetry when the numbers of ``leaves'' are
di�erent, so only clovers with the same number of
leaves (n � m) need to be compared. Besides, apart
from amplitude factors, q r� �

1n and V r� �
2n are completely

determined by the orientation of their RCGs so, given
the interaction isotropy, this comparison cannot but
depend only on the relative misalignment of RCGs.
Accordingly, each elementary contribution depends
only on the RRF that measures this misalignment
(D1;2

n;n) and In results from gathering these RCG mis-
alignment contributions radially. Each interval
� r; r � Dr � contributes the complex number D1;2

n;n r� �rDr.
Now the sum of two complex numbers has the largest
modulus when they point in the same direction, and the
smallest modulus when they point in opposite direc-
tions. They ``interfere'' constructively in the former case
and destructively in the latter one, just as optical
vibrations in Young's fringes experiment. Hence jInj
attains its maximum Eq. (9) when all elementary
contributions are aligned along the same direction, i.e.
when the MRL is contained in a half line starting from
the origin. All other shapes contain destructive inter-

Fig. 5. Top row: 2D model of the protein active site potential V2 ~r� �.
V2 ~r� � is the sum of s-type Gaussians lying at the vertices of two
hexagons. This is only a matter of convenience, ARFs being known
analytically in the Gaussian case. First (second) hexagon vertices
are distant by 1:54 ÊA (2 ÊA) from O. The Gaussian width r is 1 ÊA
(1:5 ÊA). The second hexagon is tilted by ÿ20�. Gaussians are
pictured by circles of radius r=2. For C6 symmetry, only
D0;D�6;D�12 . . . are non-zero. The sixth-order ARL is represented
on the right. Bottom row: charge densities q1 ~r� � of the two ligands
L; L�. L is the superposition of s-type gaussians lying at the vertices
of two equilateral triangles. The ®rst (second) triangle vertices are
distant by 1:8 ÊA (1 ÊA) from O0. Gaussian widths are 1:5 ÊA (0:8 ÊA).
The second triangle is tilted by ÿ40�. L� is the enantiomer of L.
Right: sixth-order ARLs of L; L�. Whilst third-order ARFs of L; L�
are non-zero, the sixth-order is the ®rst order relevant to molecular
recognition with P (Eq. 7). Crosses denote O;O0

Fig. 6. Mutual recognition loops of the couples P=L (top row) and
P=L� (bottom row). In the ®rst case, the MRL is close to a half-line
segment apart from a small radial region near z � 0. Therefore
radial interferences are constructive almost everywhere (just as
bright fringes in Young's experiment) and I6j j, hence the minimum
association energy contribution DE6, is graphically predicted to be
much larger than in the P=L� case (bottom row), where parts of the
complex interfere destructively at short and long distances from O,
as exempli®ed by dotted arrows. MRLs are oriented in the direction
of increasing r
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ferences, that is, some parts of the loop tend to cancel
each other, thereby decreasing jInj (Fig. 6).

0 � jInj �
Z�1
0

jD1;2
n;n r� �jr dr �9�

In the gauge framework MR thus appears as a
phenomenon of radial interference of RCG misalign-
ment contributions. Just as light interferences, this
phenomenon features both amplitude and phase aspects.
MRLs provide a graphical representation of MR
because MRLs display the radial distribution of the
interfering contributions. The more spread an MRL, the
more destructive the interferences between various parts
of the complex PS, the worse the MR. Thus examination
of MRLs can show which of several ligands is best
recognized by a given host at every order. For example,
the MRLs in Fig. 6 show that L features a better
electrostatic matching with P than L� at the leading
order, MR being almost perfect in the former case. In
this framework, MR at the nth order is naturally
measured by the dimensionless parameter jn Eq. (10).

0 � jn �
Z�1
0

D1;2
n;n r� � r dr

������
������
, Z�1

0

D1;2
n;n r� �

��� ��� r dr � 1 �10�

9 Conclusion

This paper was ®rst devoted to a non-technical presen-
tation of a recently introduced class of geometries called

gauge geometries. The understanding brought by 2D
gauge geometries was then brie¯y investigated, ®rst in
the case of chirality, then in that of molecular recogni-
tion, because of the importance of these questions in
biology and chemistry. In both cases, an original
description was found, featuring a graphical representa-
tion through speci®c tools of gauge geometries called
radial loops. Molecular recognition was studied in a
simpli®ed 2D context in the hope of clarifying the ideas
underlying this apparently unprecedented approach.
Results nevertheless suggest promising prospects for
the 3D theory. This approach indeed features graphic
comparisons between ligands that may be applied to
structure-based drug design. Protein/protein and pro-
tein/nucleic acid docking are also within the scope of
this description.
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